

A Hybrid Recognition System for Check-Worthy Claims Using Heuristics and Supervised Learning

Team: Prise de Fer

Chaoyuan Zuo¹, Ayla Ida Karakas², Ritwik Banerjee¹ ¹Department of Computer Science ²Department of Linguistic Presented by Chaoyuan Zuo PhD Candidate

01 Introduction

A Hybrid Recognition System using Heuristics and Supervised Learning

Model and System

Data Preprocessing

Speaker Name Normalization

- Hillary Clinton (D-NY)
- Former Secretary of State, Presidential Candidate

• Clinton

Hillary Clinton

Sub-Datasets Creation • Training Data: Debate

• Test Data: Debate & Speech

Two Classifiers

Feature Extraction

- Lexical Features: Remove stopwords and stem the words
- Semantic Features: Named entity
- Word Embedding : Word Vector
- Stylometric Features : POS tags, tense, negations, selected tags of constituency parse trees
- Affective Features: Sentiment analysis, subjectivity, bias...
- Metadata Features: Binary non-linguistic features
- **Discourse Features:** Segment features

Feature Selection

Imbalanced Dataset!

Model

System

Imbalanced Learning

Under-sampling Over-sampling

Classifier

SVM MLP

Heuristic

Rule Strict Mode

Imbalanced Learning

From random over-sampling to ADASYN

$$x_{new} = x_i + \lambda \cdot (x_{zi} - x_i)$$

 $\lambda \in [0,1], x_{zi} \in k$ nearest–neighbors

ADASYN: the number of samples generated for each x_i is proportional to the number of samples which are not from the same class than x_i in a given neighborhood

http://contrib.scikit-learn.org/imbalanced-learn/stable/over_sampling.html#from-random-over-sampling-to-smote-and-adasyn

Classifier

SVM

MLP

• 2 hidden layer: 100 and 8 units

- L2 Regularization
- Activation Function: Tanh
- Optimization: Adam
- Linear kernel with L2 loss
- L2 Regularization

Heuristics

SUPER BUT

Motivation

False Positive Instances:

- "The USA, the USA, the USA..."
- *"Can you imagine the people that are, frankly, doing so well against us with ISIS?..."*

Algorithm 1 Heuristics for assigning the check-worthiness score $w(\cdot)$ to sentences.

Require: category $\in \{\text{SPEECH}, \text{DEBATE}\},\$ strict_mode \in {**true**, **false**}, sentence *S*. MIN_TOKEN_COUNT $\leftarrow 0$ if category is SPEECH then if strict_mode then $\text{MIN}_{\text{TOKEN}}_{\text{COUNT}} \leftarrow 10$ else MIN TOKEN COUNT $\leftarrow 8$ end if else if strict_mode then MIN TOKEN COUNT $\leftarrow 7$ else min_token_count $\leftarrow 5$ end if end if

if *S*_{SPEAKER} is SYSTEM then $w(s) \leftarrow 10^{-8}$ end if if $S_{\text{NUMBER OF TOKENS}} < \text{MIN_TOKEN_COUNT}$ then $w(s) \leftarrow 10^{-8}$ end if if S contains "thank you" then $w(s) \leftarrow 10^{-8}$ end if if $S_{\text{NUMBER OF SUBJECTS}} < 1$ then if category is SPEECH then $w(s) \leftarrow 10^{-8}$ else if *S* contains "?" then $w(s) \leftarrow 10^{-8}$ end if end if

	MAP	MRR	MRP	MP@1	MP@3	MP@5	MP@10	MP@20	MP@50
MLP*	0.1332	0.4965	0.1352	0.4286	0.2857	0.2000	0.1429	0.1571	0.1200
MLP _{str}	0.1366	0.5246	0.1475	0.4286	0.2857	0.2286	0.1571	0.1714	0.1229
ENS	0.1317	0.4139	0.1523	0.2857	0.1905	0.1714	0.1571	0.1571	0.1429
MLP _{none}	0.1086	0.4767	0.1037	0.2857	0.2857	0.2000	0.1286	0.1071	0.1000

TABLE 1: Results for the Check-Worthiness task of our submitted models: MLP^* was the primary submission, along with two contrastive runs, MLP_{str} and ENS (MLP with strict heuristics and the ensemble model, respectively). MLP_{none} shows the results of the MLP without any heuristics being applied. The primary evaluation metric was mean avg. precision (MAP). The mean reciprocal rank (MRR), mean R-precision (MRP), and mean precision at k(MP@k) are also shown.

Results & Analysis

01 Conclusion

Conclusion

- Feature Design
- Imbalanced Learning
 - Heuristics

Future Work

- Deep syntactic features
- Automated name normalization
- Complex neural network

Oversampling with SMOTE

The SMOTE algorithm is parameterized with k_neighbors (the number of nearest neighbors it will consider) and the number of new points you wish to create. Each step of the algorithm will:

- Randomly select a minority point.
- Randomly select any of its k_neighbors nearest neighbors belonging to the same class.
- Randomly specify a lambda value in the range [0, 1].
- Generate and place a new point on the vector between the two points, located lambda percent of the way from the original point.

Oversampling with ADASYN

ADASYN is similar to SMOTE, and derived from it, featuring just one important difference. it will bias the sample space (that is, the likelihood that any particular point will be chosen for duping) towards points which are located not in homogenous neighborhoods

